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I. TIVT¶oCTO1 AND IuLATIOE

An important application of the wing-body juncture problem is in

the study of the horseshoe vortex which occurs in the vicinity of

a wing/strut-wall intersection for instance. Numerous flow

visualization studies (Thwaites 1960, Baker 1979, Barber 1978,

Thomas 1987) have shown that the horseshoe vortex system consists

of a three-dimensional boundary-layer separation in front of the

wing/strut followed by a vortex flow which wraps around the

structure. This vortical flow is characterized by three-

dimensionality, unsteadiness, and large Reynolds number but

having viscous effects which are crucial to the flow evolution.

Such flows exist in many situations. For example, horseshoe

vortex flow occurs near the junction of an airplane wing with the

fuselage (Thwaites 1960) or the junction of plate and support in

a plate heat exchanger. Another example is present in axial

turbomachinery (Barber 1978) where boundary layers which develop

on the annular surfaces of the axial flow passage encounter rows

of stationary and rotating blades. The horseshoe vortical flow

is of engineering interest because it can lead to flow

degradation, high wall shear stresses, and high local heat

transfer rates. It also plays a role in the origin of three-

dimensional corner flows.

Three-dimensional fluid notion past a wing-body juncture or

the related problem of corner flow is of fundamental importance

in fluid mechanics as noted above. In all of these cases, the

concern is with both the local and global scales of the viscous
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forces produced by the body as well as with any significant

secondary flows which may be set up. It is hoped that an

understanding of these typ•s of flows and their scales will 3
provide us with a more complete understanding of complicated

three-dimensional, high Reynolds number flows. To this end, the 3
concepts of interaction theory have been utilized with the

ultimate goal of elucidating the major effects of viscosity and

heat transfer on the local flowfield near a wing-body juncture

for subsonic mainstream flows.

Smith & Gajjar (1984) were the first to consider the problem 5
of a steady, incompressible, laminar flow past a juncture made up

of a localized small-scale thin wing protruding from a locally I
flat surface when the Reynolds number, Re, is large, using the

triple-deck theory of viscous-inviscid interactions. A schematic

of the geometry considered by these authors and that to be 3
considered in this report is shown in Figure 1. Smith & Gajjar's

theory was developed to accommodate small wings of finite span 3
which scale with the streamwise and spanwise triple-deck length I
scales. However, as was determined as part of this current

research effort, Smith & Gajjar's theory is not generally

applicable to all suitably scaled wing shapes, as will be

discussed below. The incident boundary layer on the body surface 3
is assumed to be driven by a locally uniform external flow and it

is taken to be well developed, attached, and planar in character.

Under these conditions an interaction between the body surface

flow and the wing is established which presumably has the triple- I
I
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deck structure wherein the motion past the thin wing provokes on

the body surface an unknown pressure force which interacts with

the unknown displacement thickness there. Due to this

interaction, the boundary layer on the body surface becomes

three-dimensional and exhibits upstream influence. Furthermore,

a nonlinear interaction is possible if the slope of the thin wing

in the interaction reqion is of the order Re"*6'.

As shown by Smith & Gajjar (1984) the fundamental problem,

as sketched in Figure 1, can be reduced to a consideration of the

following boundary-value problem for an incompressible steady

flow in terms of suitably scaled velocity components (U,VIN),

pressure, P(X,Y), and displacement thickness function, S(X,Y), in

the (X,Y,Z) directions, respectively. More complete details of

the scaling laws and the triple-deck nature of the flowfield

structure can be found in Lee (1994). The fundamental governing

equations appropriate for the viscous layer in the usual triple-

deck theory are given by

E.., +v +w o )
ax ; avo

47÷vU ~ a CM ap o 2
-U. -+ +0 (•)

ax ay Txz az

aX aY + Z 8Y8 a0

In addition, the following boundary conditions apply

U - V - W - 0 on Z - O, (4)
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U- Z -6((X,Y), V. 0 asZ.., 5

(U,vWP) -, (Y,o,o,o) as lxI - w, (6)

and, and according to Smith & Gajjar (1984), the symmetry 3
condition

V - 0 on Y - O. (7) 5
The problem is closed mathematically by applying the I

pressure-displacement thickness interaction law, viz,

(X-"•÷+y
2

(8)

for two-dimensional wings, or

IfI
1 f- - ±1 (4,.q d,•

for three-dimensional wings, where hf(X) is the scaled local two- 3
dimensional wing surface shape, while the three-dimensional wing

surface is defined by hg(X,Y). We should note that it is the 5
wing shape which generates the forcing which in turn generates

the interaction and three-dimensionality in the body's boundary 3
layer. This forcing comes from outside the boundary layer itself I
and is, therefore, quite different from the usual three-

dimensional interactive flow produced by a small hump in a 3
boundary-layer flow. I

I
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In general the problem posed in equations (1) - (7) and (8)

or (9) above is nonlinear and thus requires a numerical

treatment. However, Smith & Gajjar (1984) and Lee (1994) have

considered linearized solutions of these equations, using Fourier

transform methods, valid for small values of the wing thickness

parameter h, and several choices for the wing shapes f(X) and

g(XY)•

These linearized results always showed two maximum local

deficits occurring in the streamwise surface shear stress on the

body, just ahead of and beyond the front of the wing, on the axis

of symmetry, which suggests that a regular separation or flow

reversal would tend to occur there first, when the flow is

sufficiently nonlinear. This result, coupled with the

corresponding spanwise surface shear stress patterns, led to

qualitative agreement with experimental observations, as noted by

Smith & Gajjar (1984), of a separation line starting upstream of

the wing and bending around it, and of separation downstream.

Furthermore, the secondary flow patterns found from the

linearized analysis tend to tie in with those found in

experiments also.

In view of the encouraging results of the linearized theory,

in this research effort numerical solutions of the nonlinear

boundary-value problem defined by equations (1) - (7), and (8) or

(9) have been found for several wing shapes with the goal of

determining, among other things, the conditions for boundary-

layer separation. We have also extended the theory to include the



63

effects of temperature on the flow when the mainstream is U
subsonic in character. Referring to Lee (1994) for details, it

can be shown that the energy equation in suitably scaled 3
variables for the nondimensional temperature distribution', T, in

the viscous sublayer is given by I

87f' 8+ 87'^ +WE (10)
ax ay &z Pr azi

along with the boundary conditions I

T(X,YZ) - Z as IXl,IYI - - (11) 3
T(X,YO) - o, T(XYZ) - Z - (XY) /r Z -'-

when we can assume that the wall temperature and Prandtl number, I
Pr, are constants. It should also be noted that the above system

of equations is valid for any subsonic flow since all parameters

related to the compressibility effects of the flow can be scaled

out in the triple-deck formulation of the problem (see Lee 1994).

In obtaining numerical solutions to the linearized form of I
the above equations for h << 1, Smith & Gajjar (1984) introduced 3
the concept of an "effective" hump shape to transform the

linearized physical wing-body juncture problem into an equivalent 3
three-dimensional hump-like problem using an appropriate

transformation relating the displacement thickness, interactive I
pressure and the wing shape. This chanqe allowed for rather I

simple computations to be done using a finit- Fourier transform

method to convert the closed-form solutions for the pressure, 3
displacement thickness and wall shear stresses in spectral space I

I
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to equivalent functions in physical space. Lee (1994) confirmed

these results and also computed the wall heat transfer

distribution functions.

In our study of the linearized version of this problon it

was determined that the theory developed by Smith & Gajjar is not

generally applicable for the airfoils they used in their paper

due to the imposition of symmetry conditions on the pressure and

the spanwise velocity. These conditions are inconsistent with the

physical formulation of the wing-body problem except for Owing"

shapes, f(X), that are composed of linear elements, such as in a

diamond shaped airfoil. This restriction places rather serious

limits on the types of airfoils for which this theory is useful.

It should be noted that attempts at generalizing this theory to

include a broader class of wing shapes was not successful.

Of primary concern in this research effort was the numerical

solution of the nonlinear governing equations (1) - (11) for

acceptable wing shapes and order-one values of the wing shape

parameter h. Two different approaches for the numerical scheme

were considered. In one approach, the finite-difference method

for three-dimensional interacting flows developed by Bodonyi &

Duck (198S) wherein the pressure-displacement law, equation (8)

or (9), is replaced by a numerical solution of the upper-deck

boundary-value problem which is solved simultaneously, following

the ideas originally proposed by Veldman (1979), along with the

finite-difference form of equations (1) - (3). In previous

studies this approach has proved to be quite useful in computing
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three-dimensional nonlinear interacting flows. In the second

approach the solution of the system (1) - (3) along with a

numerical implementation of the Cauchy-Hilbert integral, (8) or 3
(9), using Smith's approach (1991) to discretize the pressure-

displacement, law was determined. 3
In either approach the above set of equations is elliptic in

the pressure field and therefore requires a modification of the I
multi-sweep forward-marching methods which were successfully

developed for 2-D problems. As noted by Smith (1983) this

ellipticity causes an explosive 3-D free interaction in any 3
forward-marching procedure unless treated properly. To overcome

these difficulties, a skewed-shear method is used to cast the 3
problem in a quasi-two-dimensional form (see Bodonyi & Duck 1988

and Lee 1994) while at the same time capturing the elliptic

nature of the inverse 3-D boundary-layer problem. In terms of 3
these new variables, a second-order finite-difference method was

developed for the governing equations and numerical solutions of 3
the finite-difference equations were computed for a variety of

grid sizes and several choileia for the wing shape. The

computations are involved, requiring the use of the CRAY YMP/864

supercomputer at the Ohio Supercomputer Center. Results of the

numerical computations are given in the following section. 3
numerica

I
I
I
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II. NMIICAL RZSULTS

After considerable study, it was determined that the second

3 numerical approach discussed above resulted in the most accurate

solutions of the governing equations. Therefore, the numerical

3 results to be presented below will be taken from that approach.

As noted above, for the theory to be strictly applicable, the

two-dimensional wing shape, f(X), must be composed of linear

3 elements. Thus we shall consider the diamond-shaped airfoil

defined by

- [1x- jbr 0 < X< 0.5 (12)

AX') "1- for 0.5 < X < 1

The grid sizes used in all cases have 101 points for -4.5 : X :

5 5.5, 31 points for 0 : Y 5 3.75 and 41 points for 0 S Z S 6 in

the streamwise, spanwise and normal directions, respectively.

The local convergence criterion for the interactive pressure and

3 the global convergence criterion for the velocity components are

10- and 10-3, respectively.

3 A surface plot of the effective hump shape generated by the

diamond shaped airfoil is given in Figure 2. It is clearly

I evident that this "effective" hump shape is very peaked near Y-0

3 and X -'1/2. This sharp peak places severe limitations on what

grid sizes are needed to adequately resolve the flow structure in

3 this vicinity, and it is a primary reason that numerical

solutions could be found only for rather limited ranges of the

5 parameters involved. This situation is quite different than in

g the "regular" 3-D hump problem considered by others since in

I



103

those cases the hump shape could be more conveniently defined so

that such situations as that noted above did not occur. In the

current study the "hump" shape is predetermined, depending only 3
on the actual winq shape and the mathematical transformation

inherent in the problem. 3
Figures 3 through 6 give comparisons between the linearized

solutions usinq the FFT method and the nonlinear solutions using

the finite-difference method for small h. Note that the results

are quite close to each other, indicatinq that the nonlinear

finite-difference computational method developed in this effort 3
does work. For completeness, Figures 7 - 11 give the surface

plots for the pressure, stream and spanwise shear stress I
distributions, displacement thickness, and wall heat transfer

distributions, obtained from the nonlinear computations for

ho0.1. 3
Nonlinear solutions on the plane of symmetry, Y - 0, for

various values of h are given next in Figures 12 - 15. Note that 3
oscillations beqin to appear in the solution for the pressure 3
when h - 0.5, and they are clearly evident when h - 1.0. This

numerical instability could not be removed from the computations, 3
and this eventually prevented the computation of further

solutions for larger values of h. Unfortunately, this numerical 3
breakdown always occurred before separation on the body surface

in front of the winr occurred. Also note that the nonlinear

solutions at Y - 0 do not return to either 0 or constant values

at the downstream limit of the computational domain. The reason I
I



U

for this discrepancy is that the computational domain for the

I nonlinear problem is much smaller in extent than that for the

linearized solutions found by the FFT method. Due to computer

resource limitations it was not feasible to solve the nonlinear

5 problem on larger domains, although it is believed that the

computations would return to their appropriate values if a larger

I domain were utilized.

Figure 16 shows the flow streamlines in the plane of

symmetry (Y - 0) and Figures 17 through 19 show the cross-flow

3 streamlines near the leading edge, at mid-chord, and near the

trailing edge for h - 0.5. Note that the directi- of the normal

3 velocity is downward near the wing (0 < X < 1). This effect is

indicated by the solid lines in Figures 17 and 18. However, the

normal velocity changes sign near the trailing edge as shown by

3 the dotted lines in Figure 19. The surface stress pattern for

this problem is shown in Figure 20. The only noticeable effects

3 on the surface due to the wing are in the vicinity of the wing (0

< X < 1, Y - 0).

The sharp peak of the effective hump at Y - 0 soems to be

3 the main cause for the numerical difficulties which occur behind

the wing. This sharp peak is the result of discontinuities in the

3 derivative with respect to X of the wing-shape function which

appears in the pressure-displacement thickness relationship. As

I noted without reaching large enough values of h it is impossible

3 to have separation around the wing. For example, the flow over a

"regular" hump shape h.exp(-x 2-y 2 ), will result in boundary-layerI
I



12 3
separation when h is approximately 2.8 (see Bodonyi G Duck 1988). n
Separation in front of this winq-body junction would be expected

to occur for such order-one values of h. However, in this 3
problem, the numerical scheme becomes unreliable for h > 0.5, and

for these, or smaller, values of h, the flow near the surface is 3
still strongly attached, precluding the possibility of boune

layer separation. 3
For a study of step-size effects, an effective hump shape is 3

computed for a finer grid with AX - 0.05 and AY - 0.0625 for the

diamond-shaped airfoil. Figure 21 shows the com parison of the

effective hump shape for the two different meshes. The effective

hump shape generated using this finer grid is input into the I
nonlinear wing-body solver using the grids AX - 0.1 and AY - A

0.125. In this case, the pressure shows oscillations for even

smaller values of h than before, as shown in Figure 22. Much 3
finer grids may therefore be needed along with wider ranges for

each direction to increase h to larger values. I
Linear and nonlinear solutions for a three-dimensional wing i

shapes of the following forms have also been computed:

5MXO) -(X)[1+oZ.J (13) 3

I
rn -/X-Z.M)e'k (f X >" ztmI (14)Lo 0 V < Z.. i

Z,, in the upper-deck coordinate, 0 in a sweep angle and a in a
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positive constant which controls the degree of tapering in the Z

direction away from the body junction. The results of the

computations are qualitatively similar to those of the two-

dimensional wings discussed above and will not be repeated here.

For further details on these three-dimensional solutions see Lee

(1994).

I
U
3

I

I
I
I
U

I

I
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III. nm M MXM

In this research effort we have considered the flow

structure near a small-scale wing-body combination within the 3
framework of triple-deck theory. Thin airfoil theory was used to

obtain the pressure distribution around a wing which in turn 3
triggers a viscous-inviscid interaction near the winq-body

Juncture. As part of the formulation of the problem we have

followed the lead of Smith & Gajjar (1984), utilizing the concept 3
of an "effective hump shape" in the formulation of the nonlinear

problem. This technique not only simplifies the pressure

expression but also enhances the convergence of the numerical

scheme even though the concept itself is just a transformation to

convert the wing-body problem into a more conventional problem 3
for computational efficiency.

As noted earlier, there is an important inconsistency in 3
Smith & Gajjars paper on the winq-body problem. Accordinq to the

triple-deck scalings, the winqgs presence enters in the upper I
deck of the triple-deck theory as a thin-airfoil formulation to

leading order. In the lower-d•ck region, however, the only effect

of the wing's presence is felt in the pressure field. Thus it can 3
be shown that the boundary condition on the pressure must be

given by 3
.a(XTso) = -A d1 (1f
FY dX2

However, Smith & Gajjar omitted this condition and used 8P/Y- 0 1
instead. This is equivalent to taking the spanwise velocity, V, 3

I
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equal to zero at the line of symmetry, and this is inconsistent

for this problem. As a result it can be proved from the

linearized problem that there can be no viscous-inviscid

interaction for general two-dimensional wing shapes. Furthermore,

Sthis result seem to carry over to the nonlinear computations.

The exception to this result occurs for wings composed of linear

elements since in this case f*(X) is identically zero. We note

3 here that there can be a viscous-inviscid interaction for a

three-dimensional wing shape as discussed in Lee (1994).

3 It is not clear at this point whether the triple-deck

structure can accommodate interactions which originate outside

I the lower-de*ck region as originally noted by Stewartson (1974).

Indeed, the results of this study suggest that the wing-body

juncture problem is generally not of the triple-deck kind

3 proposed by Smith & Gajjar, due to the inconsistencies in

matching the solutions between the three regions of the flow

3 field normal to the surface. In particular, the effects of normal

pressure cannot be ignored, and the wing's presence must come

into play in a more significant way than originally proposed.

Unfortunately, attempts at developing such a theory have not been

successful.

iI
B
I
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Figure 1: fhe triple-deck "box" describing the three-
dimensional flow about the entire junction of
a thin symmetric wing is shown by dashed
lines. The box's dimensions are O(Re3 18) X
O(Re 1 ) x 0(Re-) in the X,,Y,, and Z
directions, respectively, and the distance to
the box from the leading of the flat plate is

IL - 0(i).
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Figure 3: Comparison of surface pressures for linearized and
nonlinear solutions of the two-dimensional wing-
body for a diamond-shaped airfoil.



I213

h 0.1

0.4 = I
"0.2 3

" 0.0

v I
-0.2

-0.4 3
I I I

-4 -2 0 2 4 3
x I

Figure 4: Comparison of streavwise shear stress for
linearized and nonlinear solutions of the
two-dimensional wing-body for a diamond-
shaped airfoil.
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Figure 5. Comparison of displacement thickness for
linearized and nonlinear solutions of the two-
dimensional winq-body for a diamond-shaped
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Figure 6. Canparison of vail heat transfer for linearized

and nonlinear solutions of the two-dimensional
wing-body for a diamond-shaped airfoil. I
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Figure 13: Comparison of stroamuise shear stress for
nonlinear solutions of the two-dimensional wing-
body for a diamaond-shapd• airfoil.
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Figure 15: Comparison of wall heat transfer for
nonlinear solutions of the two-dimensional vinq-
body for a diamond-shaped airfoil.
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Figue 16: Flow streaulines in the plan, of syvmetry (Y -- 0)i

for the t'wo-iue'sional wing-body for a diannd-I
shaped airfoil ( h - 0.5, 0 < X < 1). ThO dotted
lines indicate the location of the ving. The

contour values are 0 (Z - 0), 0.5, 2.0, 4.0, 6.0,
10.0,12.0, 16.0 and 18.0.
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Figure 17: Cross-flow streamlines near the leadinq edqe (X -
0) of the two-dimensional wing for a diamond-
shaped airfoil (h - 0.5). The contour values areI 0 (*), 0.01, 0.02, and 0.03.
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3 ~Figure 21: Compaison of effective huamp shapes for the two-
dimensional wing f or the diamond-shaped airfoilI
(grid 1: AX-0-1 and AY-0.125, grid 2: AX-0.05 and
AY-O. 0625).
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Fiqure 22: Comparison of surface pressures for nonlinear I
solutions (h-0.5) for the two-dimensional wing
for the diamond-shaped airfoil (grid 1: AX-0.1
and AYiO.125, grid 2: AX=O.05 and AYIO. 0625).
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